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On the Theory and Estimation of the Cosine Invariants Cos (¢, + ¢, + @, +@,)*
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For fixed hy,h,,h;, subject to h; +h,+h;=0, and uniformly distributed k, the conditional joint prob-
ability distribution of the pair of phases ¢x,¢n, +x> &iven|{E_p;+ul, |Exls |En, +1} is found. If I+ m+n+
p=0, this distribution leads, via a suitable sampling technique, to estimates having probabilistic validity for
the cosine invariant cos (¢; + ¢m+ @n + @) in terms of the seven magnitudes |Eyl, | Eml, | Enl, | Epl, | Ey + ml,

[El+nl, IEl+pl'

Introduction

Explicit formulas for the cosine seminvariants cos ¢
and cos (¢, +¢,), having exact validity under certain
conditions, are now known for a number of space
groups, and the algebraic techniques for deriving
similar formulas in most of the other space groups
have been described (Hauptman & Karle, 1953; Weeks
& Hauptman, 1970; Hauptman, 19724,b). Both alge-
braic and probabilistic methods are available for estim-
ating the value of the cosine invariant cos (¢; + ¢, + @3),
and it is known for example that the expected value of
the latter is 1,(A4)/I,(4) where Iy, I, are modified Bessel
functions, 4=(2/NY?)|E,E,E;|, and N is the number
of atoms, assumed identical, in the unit cell. Thus the
average value of cos (¢, + ¢, +¢s) is positive and tends
to unity with increasing 4; its reliability as an estimate
of the value of the cosine also increases with increasing
A. Motivated by the Harker-Kasper inequalities,
Schenk and de Jong have recently made some semi-
empirical observations and applications of cosine
quartets cos (¢, + ¢m + ¢ +¢,) of special type (Schenk
& de Jong, 1973; Schenk, 19734, b, 1974). The theory
and estimation of the general cosine invariant, cos (¢, +
Pmt+@n+0p), subject t0 |Eym| X|Eyinl ~|Ey,pl~0,
has also been worked out (Hauptman, 1973, 1974). In
the present paper the probabilistic theory of the general
cosine invariant cos (¢;+ ¢m+@n+¢@p) subject to no
restrictive conditions is initiated. The theory leads to
an estimate for the value of the cosine which, in marked
contrast to the estimate for cos (¢, + ¢, + ¢;), may lie
anywhere between —1 and +1. In particular, if B=
/N E\ELELE, is sufficiently large and |E, nl,
|E\ 4 al, |Ey 4 pl are also large, then the estimate is positive
and tends to unity with increasing |E,;mls |Eisals
|E\4pl.If,on the otherhand, | Ey 4 | ~ | By 4 ol 2| E1 4 ol =0,
then the estimate is negative and tends to —1 with
increasing B. The latter result has been recently secured

* Presented at the meeting of the American Crystallographic
Association, 18-23 August, 1974, at the Pennsylvania State
University; Abstract D2.

1 Part of this work was done while the author was a visiting
fellow in Italy under the auspices of the Consiglio Nazionale
delle Ricerche, March 15-May 15, 1973).

(Hauptman, 1974) so that both the methods and results
described here may be regarded as generalizations of
this earlier work. Since the values of the cosine in-
variants, in particular those which are small or negative,
are of great significance in direct methods of phase
determination, it is anticipated that the results obtained
here will have important application in the further
development of these procedures.

1-1. Intuitive background*
Let Lm,n,p, be fixed reciprocal vectors which satis-

(L.1)

fy
l+m+n+p=0,

and assume that Ey|,|Eql, [El, |Epl are large. Fix the
origin by means of
(pl=¢m=¢n=0' (12)

Suppose next that | Ey , |, | Em +nl [=E1 4+l in view of
(1.1)] and |E, ,,] are also large. Then it is well known
that, under these conditions,

Pt Pm+t o 1-m>0, (1.3)

Pmt Pt P _m-n>0, (1.4)

Pntor+9-n1~0, (1.5)
so that, in view of (1.2),

¢l+m:(0m+n:¢n+l:0- (16)

It follows similarly, from (1.1), (1.2), (1.6) and the
assumed conditions, that

¢l+m+¢n+wp:¢p:0, 1.7)
(0m+n+¢l+(0p:(0p:0s (18)
Pni1t Pm T Pp=pp~0. (1.9)
In short, with the origin fixed by means of (1.2),
0,0 (1.10)
or, from (1.2),
N+ Om+oat+,~0. (1.11)

* The argument presented here is a variant of one suggested
by the referee, and due acknowledgement to the referee is
made for his suggestion.
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However, from (1.1), it follows that the left side of
(1.11) is a structure invariant so that its value is inde-
pendent of the choice of origin. In summary then, if
|El|9 |Em|s |En|s IEp|9 [El+m|9 IEl+n[a IE1+DI arealllarge’the
value of the cosine invariant cos (¢, + @m+ @n~+ @p) is
probably positive.

Clearly, however, the cosine invariants must occa-
sionally be negative. In view of the previous argument,
it is plausible to suppose that the cosine will be negative
precisely in the circumstance that the hypotheses of the
preceding paragraph are grossly violated, that is that
each of |E;4ml | Erenl, | Ei+pl is small. While this argu-
ment is only heuristic and by no means a rigorous
proof, it does serve to motivate the mathematical
analysis which follows and throws some light on the
more quantitative results given in the sequel.

2. For fixed h, and h;, the joint conditional probability dis-
tribution of the pair, @, @n, +x, given [E_p;,x|, |Exl
Eh1+k

Suppose that a crystal structure in the space group P1
and consisting of N identical point atoms in the unit
cell is fixed, and let h;,h,,h; be fixed reciprocal vectors
satisfying

h;+h,+h;=0. 2.1

Introduce the usual abbreviations,
Ej=Ehja|Ej|=!Ehj|a(0j=¢hj, j=1a2,35 (22)
=01+ 0+03, (2.3)

where g; is the phase of the normalized structure factor
E;. Suppose that the vector k is a random variable
which is uniformly distributed over reciprocal space.
Then E_y; 4k Exs En,+x» as functions of the primitive
random variable Kk, are themselves random variables
and the joint probability distribution, correct to terms
of order 1/N, of the respective magnitudes and phases
|E_ng+xcls | Excls | Eny 11> @~ ngti @10 @ny +x is known to be
(Tsoucaris, 1970; Hauptman, 1971, 1972b)

RiR,Ry
4

2 2
xexp{—lz[Rf (l— —l%) +R§( - I—%[l—)

(1= 5]

2
x exp | s [RRul Esl 005 (@1 = @3-+ )

P(R{,R;,R3; Dy, D,, D3)~

+ RyR;|Ey| cos (D, — D3+ ¢,)

+ RyRy|E3| cos (@3— ¢1+(0z)]}

2
X exp {—— A [RiR, |E,E;| cos (P—D,— 1 —p,)
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+ R,R,| E,E5| cos (D, — D3 — 0, — 93)
+ R3R|E3E|| cos (¢3—¢1_(/’3"(01)]}
x f1= gy (RE+ Ri+ R+ 4R R+ 4RERS
+4RR—12R—12R2— 12R: + 18)} L e
where
R,>0, R,>0, R;=0, 2.5)
1 2|E,E,E.
A=1= - (EF+ER+1E + 2ERE
x cos =0, (2:6)

and ¢ is defined by (2.3).

The reader can readily verify, by consulting the
references cited if necessary, that (2.4) is a well behaved
probability distribution in that it is (essentially) non-
negative for all values of the variables R,, R, Rj,
@, P, d; and parameters E,, E,, E;, and is suitably
normalized.

Suppose next that R, R,, R; are fixed non-negative
numbers and that the vector k is a random variable
which is now uniformly distributed over that region of
reciprocal space for which

|E—h3+k‘=R1, [Exl|=R,;, IEh1+k|:R3~ 2.7

Then the phases ¢y, ¢y, +k» s functions of the primitive
random variable k, are themselves random variables.
Denote by P(®,, P3| R, R,, R;) the joint conditional
probability distribution of the pair ¢y,¢n,+w given
(2.7). Then P(®,, D3| R;, R,, R3) is obtained from (2.4)
by fixing R,, R,, R,, integrating with respect to @, from
0 to 27, and multiplying by a suitable normalizing
constant. This integration has already been carried out
in a different context [Hauptman, 1971, equation (6.6)].
Thus, correct to terms of order 1/N,

P(d)Zs ¢3|R19 RZs RS)

K ANI/Z

2
AN

1 2
~ = €Xp {i R,R3|Ey| cos (P, — P3+¢1)

R,Ry\E,Ey| cos (@,— ¢3—¢2—¢3)}

2R
X Io{ oy (RALESP+ RALESP

+2R2R3|EzEslcos@z—cba—q»z—ws)]m}, 2.8)

where I, is the modified Bessel function, K is a normal-
izing parameter to be determined, and R, R;, R; are
fixed, preassigned, non-negative numbers.

In order to evaluate K, one integrates (2.8) with
respect to @, and @; between 0 and 2z and equates the
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result to unity. To this end the sum of the two cosines
in the exponent of (2.8) is replaced by a single cosine
by means of the trigonometric identity

i A; cos (p+a;)=X cos (p+&),

i=1

(2.9)
where

X=( Z AA; cos (a;—ay))'’?,

ij
1

(2.10)

Xcosé= Ad;cos o,

i=1

@2.11)

n
Xsiné=> A4;sina; .

i=1

(2.12)

Also, with the use of the addition formula for Bessel
functions (Watson, 1958, pp. 358, 361), (2.8) finally
becomes simply

P(¢2) ¢3|-R1a RZ’ -R3)

1 2R,R X
= g o a8 (B 230

® 2R, R,|E}| 2R, Ry|E;]
X ”=Z_°° I:u( Z;]\/21/23)IM( AINI/ZZ)
x €08 (D, — D3 —0,—03) , (2.13)
where, from (2.10)—(2.12),
2|E\E,E5| |E,E;|7 12,
X= [|E1|2— L2 cos g+ st_] (2.14)
E,FE

X cos £=|E,| cos g, — —I—]%/j—l cos (g2 +¢3), (2.15)
Xsin {=|E| sin ¢, + I—Nz-l—ifl sin (g, + @) » (2.16)

and ¢ is given by (2.3), so that X and ¢ are independent
of @, and @,. In view of

COS (D, — D3 —,—3)
=c0s u(D,— D3+ &) cos ulp, +o3+&)

+sin p(D,— B3 +&) sin plp, + 93+, (2.17)
and the integral formulas (Watson, 1958)
1 2 .
ES €xp (z cos @) cosupdp=1,(z), (2.18)
o
2
S exp (z cos g)sin updp=0, (2.19)
o

the integration of (2.13) with respect to &, is readily per-
formed:

-

vP3=0
w9y 2R,Ry|Ey|
S z IM ( ANi/Z 77)

¢3=0 K U=—o00
( 2R Ry E5| ) (2R2R3X)
Iu

2
S P(®, D3| Ry, Ry, R)dD,d D,
$,;=0

~

x I,

ANT? AN

X c08 gy +ps +E)dDs , (2.20)

the integrand of which is independent of @®;. The
second integration is therefore immediate and leads to
the desired expression for K,

= E
K~ S Iu(zR‘R’" 3')1 S

e oo ANI/Z u

2R,R: X
x I, (—ALNT%) cos gz +o3+<) ,

( 2R, Ry|E)| )

2.21)

where X and ¢ are given by (2.14)-(2.16).

In order to exhibit the dependence of K on ¢
explicitly, one first shows by mathematical induction
on u, that

. E,E. 2
B exp (i)~ V20 \ M
exp {iu(p2+ 93 +&)} = T BE
|Ey| exp (—ip)— NUZ
p=0,+1,42,.... (2.22)
Then, from (2.22) and (2.14),
cos i(p,+ @3+ &) =14 exp {ip(p,+ s +&)}
+3 exp {—iup,+ 93 +8)}
170 . E,E;|\ *
= m{( |E\| exp (ip) — |_N21/_:|)
. E,E;|\ *
+([E1| exp (—ip)— I]\;l/;l ) } . (2.23)

Substitution of (2.23) into (2.21) yields

= 1 (2RRIEL , [2RR|E,|
k=am® 3 oy I"( '2111'\’;1721) “( ZNJ'UZL)
2R,R. X . E,E;|\ *
XI“( N ){(]E‘I exp (ip) = ljvzf‘fsl)

 |EE)\
Bl ew -0 ) @29
an expression for X in which the dependence on ¢ is
clear.

Another expression for K, independent of X, is ob-
tained by noting that /_,=1, so that the cosine func-
tion in (2.21) may be replaced by the exponential
function and K becomes
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K~4x? ”_Z_oo I, (2R ]I\lelllesl ) I (zﬁlﬁﬂfi)
|Ey| exp (—ip)— %ﬁl 12
) |Ey| exp (ip) — I%ﬁ'l (2.25)

Finally, employing again the addition formula for
Bessel Functions, and noting that 1,(—z)=(—1)*1(2),

1)u+v[ (2R£_2|_R3| )

K~an* 3 (- N

294
—o0

2R,RYE,|\ . {2R,R|E,|
X Iu ( AIN'UZ‘?_) IV ( AZNE;IZI )

(2.26)

2R,R,|E,E.
) (2_A3]|Vg_3|_) cos v ,

so that again the dependence of K on cos ¢ is clear.

3. The conditional expected value of
cos 7 (o +¢_ hl—k+q) n;tO_n3)s
glvenlE h3+k £l kl | hi+k

In this section the conditional expected value of the
cosine invariant cos t(gx+ @ _n;—x+¢@- ny - ny) I8
derived. Although only the special case =1 is import-
ant in the applications, the analysis is carried out for
arbitrary integral ¢ in order to permit an estimate for
the variance, which depends also on the case =2, to be
obtained. The estimate for the variance is needed later
(§6).

The conditional expected value of the random vari-
able cos H(gx+@-nj-x+@-n+¢_ny), given (2.7), is
found from (2.13) by means of

e{coS Hpu+ @ —ni -kt @ —ny+@-n3)|Ri, Ry, R3}=¢

l 2n 2
Z?S . S €08 t(D,— D3~ — ¢3)

D= P3=0

X exp{2 R

AN”Z cos(cb2 <D3+5)}

*® 2R R,|E;| 2R R;|E)|
X 2 Iu( AlNzx/zs)Iu( AlNauzz)

U=—00

¢’3“(ﬂ2_(03)d¢2d‘p3 s (3.1

where X, £ and K are given by (2.14)-(2.16) and (2.24)-
(2.26). Proceeding as in §2, one finds

x cos u(D,—

825

S G N 73
2K Yoo Joymo TP AN

® 2R, R,|E;| 2R, R,|E,)|
x 3 L(Sat) (St

p=—o0

x[cos (+1) (P, — P3— @, — @)

cos (¢2—a>3)+¢)}

I

u

+cos (u—t) (P,— —py)|dD,dd;, (3.2)
2 2 [2RRIE|\ , (2RRIE)
8‘—‘,‘3_00’"( i) 2 i)

2R,R:X
xfue () coslu+1) (@at s+ )

2R,RX
il () cos =0 Grteut ol (I

wm o= 2R,R,|E;| 2R, Ry|E,|
= ,,5.001“( AN )I“( AN )
[ . |EyE5| | i+t
1 (2R2R3X |Exlexp (—ip) =~ [ =5~
stt \T4N12 , E,E.
|E:l exp Gip)— T2
o |EE| N utt
|Eil exp (i9)— > |55
+ (3.4)
. |EE
|Ey| exp (—W)—I—Ni,—fl J\
and finally
F,
e{cos H(px+ ¢ _ny—k+@-ny+ @—n3)|Ri, Ry, R3} ~ —FL’
0
(3.5)
where

Fi=F(E\l,|El,|Esl; Ry, Ry, R ¢)

® 2R,R,|Es| 2R, R\ E;|
2 3 g, (PRRIED (2RI
p oo n ANI/Z 13 AN1/2
2R,R: X
X Iu+t( A]ZVJZ )

l ? E,E3|\ p+1t
o] (1B e o= 53

. E,E. +t
+(Bew cip- 12N L e
so that, from (2.24),
K=F,. 3.7

Again, as in the derivation of (2.26), F, may also be
written
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5 R
F,=47? ”zy (_1)u+v+:1u(213N21|TzEs|_)

2R, R;|E,| 2R,R4|E)|
< (S ) B (g

—o00

2R2R3|E2E3|

N 3.8

X Lyiyie ( ) cos vg .

The conditional expected value of the cosine in-
variant (3.5) has been derived from the conditional
distribution (2.13) in the standard way. The analysis
however is rather lengthy and not trivial. It would
therefore be desirable, if possible, to bypass the distri-
bution in order to arrive at the expected value. Al-
though initial efforts to derive (3.5) in this way have
not yet been successful, the derivation of (3.5) without
using the distribution (2.13) would surely be a signif-
icant contribution.

4. Suitable sampling of reciprocal space leads to
the first estimate for the cosine invariant,

cos 2 (91 + 9 +0n+9p)
Suppose that L,m,n,p are fixed reciprocal vectors
which satisfy

I+m+n+p=0 4.1

so that ¢, + ¢m + ¢n + @, is a structure invariant. Define
reciprocal vectors hy,h,,h; by means of

h1=—'l—m, h2=—n, h3=““p (4.2)

so that, in view of (4.1),
h1+h2+h3=0 . (4.3)

Choose a sample of size two from reciprocal space by
means of

k=1, k=m. 4.4)

Then
hy=—1-m, hy,=—n, hy=—p,
—h;+k=1+p, k=1, h;+k=—m;
hj=—1-m, h=—n, hy;=—p,
—hy+k=m+p, k=m, h; +k=—1 4.5

for the respective members (4.4) of the sample and, in
view of (3.5), one obtains an estimate for the expected
value of cos #(¢x—¢n, +x — ¢2—¢3) by means of

&{cos H(gy — P, +x— 02— P3)} =3 €OS Ly + Pra + Pn + 0p)
+4 €08 H(Pm + @1+ @+ @p) =COS H(P1 + P+ @n + 0p)

~(%)
\Fo/
where F, is defined by (3.6) or (3.8). The average in

(4.6), in view of (4.5), is taken over the two sets of
values

4.6)

THE COSINE INVARIANTS COS (¢1+¢m+on+9p)

|E| =|Eysml, | Eol =|Eql, | Es| = Epl,
R1=|E1+p|aR2=|E1[,R3=IEml,(0=(01+m+(/7n+¢p;
|E|=|E 1 mls | Eol = Enl, | Es| = Epl, Ry=|Epn+p)s
Ry=|En|, Rs=|E\l,0=014m+ ¢@n+¢p. 4.7

One obtains five other estimates for cos t(p,+ ¢
+¢n+¢,) by choosing successively

h1=“‘l’—ﬂ, h2=_m9 h3=_p’ (4'8)

with sample
k=1, k=n; “4.9)
hj=-1-p, hy=—m, hy=-n, 4.10)

with sample
k=1, k=p; (4.11)
hj=—m-n, h,=-1, hy=—p 4.12)

with sample
k=m, k=n; (4.13)
hj=—-m-p, h=-1, hy=-n, 4.14)

with sample
k=m, k=p; (4.15)

and finally
hj=—-n-p, h,=-1, hy=—m, (4.16)

with sample
k=n, k=p. 4-17)

Averaging the six expressions like (4.6), one obtains an
estimate, based on an overall sample of size twelve, for
COS 11+ @m + P+ 0p)s

oS {1+ P+ @n+ 0p) <%> ,  (4.18)

12

in which F, is defined by (3.6) or (3.8) and the average
in (4-18) is, in view of (4.5) and (4.8)-(4.17), taken over
the twelve sets of values for |Ei|,|E|,|Esl, Ry, Ry, Rs,
p=0¢,+@,+p3, 4 and X defined by Table 1, (2.6) and
(2.14).

Table 1. The twelve sets of values over which the
sums in (4.18), (5.5) and (6.1) are taken

|Edl  |ESl B Ry R, Ry o¢=¢i+9:t+0s
1 |Eve+ml |Eal |Epl |Eispl 1Eil |Eml ¢14m +9a +0p
2 |Ei+m|l |Eal |Epl |Em+pl |1Em| E)l @1+m +@a +¢p
3 [Eisnl |Eml |Epl |Erspl 1E)|  |Eal @14n +t0m+op
4 |Ei4al |Eml |Ep| |En+p| 1Eal 1E)|l @r4n +¢m+op
5 |E|+p| |Em| |Eal |Ersal |EAl IEpl O14p T Pm+¢n
6 |Eispl |Eml |Eal |Ep+nl |Epl |Eil @14p +0m+on
7 |Em+al [E| ]Epl |Em+p| }Eml |Eal @m+ntor + op
8 |Em+al |E) |Ep| |En+p| |Eal |Eml @m+nt@r +¢p
9 |Em+pl 1E|l |Eal 1Eminl |Eml |Epl @ms+p+er +on
10 |Em+pl |Ei| |Eal |Ep+nl |Epl |Eml @mip+o1 +¢a
11 lEn+pI IEll |Em| IEn+m| |En[ lEpl @o+p +¢l +¢m
12 IEn+p| |Eyl 1Eml lEp+m| IEpI |Eul Pa+p TO1 +¢m
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5. The second estimates for the cosine invariant,
cos #(Q;+9n+0,+0,), dependent on magnitudes only

Owing to the presence of the six unknown invariants

¢ on the right-hand side of (4.18), this equation is not

useful as an estimate for cos #(g,+ ¢m+@n+0p)-
Employing the abbreviation

1,(z)

T,(2)="=, (5.1

(@) JAE) )

a more useful estimate is obtained by replacing cos vg

and 4 by their expected values thus,

C,=C(Eyl,|Eyl, | Es|) =¢{cos vp}
=¢{cos v(p; + .+ p3)} =&{exp (ip)}
2|E\E, B

|Ey|?
1/2 _
N (1 - )

=31,

2|E\ELE5|
N]_/z (1_ [EZIZ)

+T,
N
2|E\EL B

+T, |E5)?
1/2 _ 3
N ( -2 )

(52)

2|E,E,E;|
:Tv (_]:/71/22 >
Ad=A(E\|,|E,), | Esl)

) , if N is large, 5.3)

1
=e(d)=1— = (B +|El +|E5[)

2E\EE| <
+ - "Flz; Cl .

Then, in view of (3.5)—(3.8), (4.18) is replaced by

(5.4)

D
oS 11+ P+ P+ 0p) =~ <7)—;>12 (5.5)

in which the average is taken over the twelve sets of
values of |E,|,|E,|,|Esl; Ry, Ry, Ry defined by Table 1
and

D,=D,(|E\|,|Eyl,|Esl; Ry, Ry, R3)
(2R1R2|Esl ) I ( 2R Ry E,| )
u

=4g2 Y Y**',

sl T AN ANV2Z
2RR X
Loy (TUZT/%) (5.6)
or
Cagr 3 (qyprorey | ZRuReAES]
De=dn® 5 (=)L | 2o
« 1, (2‘1&@) w1, (";Rg&lﬁ' )
AN . AN
2R,REE|\ ~
X Iu+v+t (—243]\[—23) Cv (5'7)
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where C, and 4 are defined by (5:1)~(5'4) and, in view
of (2.14),

1 ~ |EE
Y=— (|E1|C1— -'—A;f,j'-) , (5'8)
AEEE) ~  |EE*1'Y?
X= [|E1|2— ]WZ 2 C+ ——2N3—] .
(59

In the applications which have been made so far,
(5.6) and (5.7) have led to two values for (5.5) which
however have been essentially identical, as was natu-
rally anticipated. Equation (5.6) is a rapidly converging
simple infinite sum whereas (5.7) is a double series. In
the actual calculations it has been found that the time
required to compute (5.6) is less, by about an order of
magnitude, than the time required to calculate (5.7).
For this reason (5.6) is to be preferred in the applica-
tions. However, because of its greater symmetry, (5.7)
may prove to be more useful in the further develop-
ment of the theory.

Although the sample on which the estimate for the
cosine invariant (5.5) is based is rather small (size
twelve), it appears to be adequate to yield reliable
estimates for those cosines which are large and positive
and, except for a still unexplained positive scaling
parameter, for those cosines which are negative. The
estimate is not reliable only when it falls in the middle
range(0-0to 0-7)and this factappears to beaconsequence
of the rather large associated variance in this case (§§7
and 8).

6. The third estimates for cos t(¢,+@n+ 0+ 0,),
using a weighted average

Instead of (5.5) in which it has been assumed that all
contributors to the sums have equal weights, one may
employ
D

"D,

2 0
COS (@1 + P+ P+ 9p) S,
12

6.1)

where D, is again given by (5.6) or (5.7) and the weight
w, is defined to be the reciprocal of the variance:

1
W =V(IE\, |E,l,|E5l; Ry, Ry, Ry; 9)

f
=Var {cos t(px+ ¢ _n;-k+¢@-n+9-n3)}
=¢e{cos® (P + @ —n1-k+P-n2 T P—ny)}
—[e{cos Hpu+@-n-k T @-n, +9-n)}I*
&3 +3e{cos 26(pu+ @ —ny—k+@-n+9-ny)}

Fi Fp _ Fi
F—g—i'*‘%To—Tg (6.2)
D D?
i+ -, 6.3
22 Do Dg ( )
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so that w,, as given by (6.3), depends only on |E)| Table 3. 33 cosines calculated to be negative with
|E,l,|Esl, Ry, Rz, Rs. As before, the sums in (6.1) are 090<B<2-16

taken over the twelve sets of values of |E,|,|E,|,|E3l, e LR R RIS I8 I e b
T e P i) o 4’ . t <
R €5.5)6(5.6)
1, Ry, R3 defined by Table 1.
133 440 435 743 313 383 813
101 J.087 2,282 2.136 2,014 0.674 0.202 0.922 2.053 -0.5070 -0,1428 =0.3642
isi 112 43 415 oio 383 327
7 Th li t. 102 3.087 2170 2,136 2017 0,385 0.282 1.038 2.050 -0.8591 -0.2332 -0.4259
21 mé1r 5%3  F83 1wio ¥F2 Kl
. (J app cations 103 2.862 .62 215 1700 1.106 0.222 0404 2.000  -0.9497 -0.260% -0.6891
813 181 131 633 94 34 733
. . . . . - l 104 3;]!4 1971 1.864 1.576 0,661 o.111 0.253 0.925 -0.99%¢ -0.3508 ~0.6482
An idealized structure consisting of N=29 identica Bal 7l 183 Ter Se: 313 Hmo
. . 108 3&5! 34011 1.591 1.810 0.398 o0.177 0.612 1.015 -0.9817  -0.3528 -0.6289
point atoms in the space group Pl was constructed P S B 1 1
. . . . §s1 1ii 413 332 a0 361 Mo
and normalized structure factors and cosine invariants w1 W GE DAL 3 TR e amn waw s
AN 131 %101 522 1013 330 dey uml
calculated as shown in Tables 2-4. The structure was mo R LR LG DA i odb ne e owe oaw e
) 1 3 ni 313 2i
. . . 109 2.8 1.87¢ L3 1.654 0.697 0.040 0.287 Y1.048 -0.9273 .38 B
designed to simulate an actual crystal structure; in DRl b e e s omn s
e . . . . 1ne 2.a18 2.566 2.001 1.55% 0.618 0.1 0.3 1.110 ~0.346%  -0.29%0 —0.4475
particular it exhibited a great deal of overlap in the 33 wde Ris  drs mas 343 141
. l . f m 54601 2,951 1.588 1.798 0.591 0.040 0.22% 0.931 0.700)  -0.404s -0.2958
33y i53 288 61k Eiw 3 i
Patterson function. As before, 1, m,n,p satisty m R R MR B M e waw cwe  wan
I I PO O O
o6 4034 o o 5 . 166 0.241 0.922 =0.8630 -0.4069 -0.4561
l+m+n+p=0. (71) ofi mé: &i1  je3 mi2 iz 513
na 1.803 2.672 Lm 1.700 0,414 0.223 0.39% 0.978 -0.9851 -0.4104 -0.5747
T R LTI Y (U TS
. b B B . 2513 0.22) 0.223 0.7110 1.212 -0.9750 -0.4113 5637
Comparisons between the true values of representative F1s 451 151 se1 Thh 11 fer °
A ns 2314 2.015 1.864 1.508 0.468 0.111 0.245 0.904 =-0.9993  -0.4162 -0.5831
samples of cosines and those calculated by means of | 1ai w png 153 In G i
N - 2. o o 3 5 B 0.976 ~0.6636  -0.4184 -0.2452
1 : > : .
(5.5) and (5.6) are shown in Tables 2-4 and the errors . Hd i L6 80 Le M M es cow oam oo
A . N . W30 is1 875 352 1 343 Fiz
briefly summarized in Table 5. The cosines calculated T .
s . . 121 851 iy wii 7710 132 91l
120 2.8 . 8
to be most positive are in good agreement with the true SELOER Ul eI 0 Loy oo oum un
b+
. 121 2,193 2.140, 1.601 1.761 0.37% 0.223 0.104 0.913 B
values as shown by Tables 2 and 5. Those cosines Fei o aui 01 Q81 ise  Ter  sia o e oo
. . N - 122 24976 2.5 1.873 1831 0.435 0.15) 0.136 0.948 -0.98%8  -0.4552 ~0.5346
calculated to be negative correctly identify the cosines | @i jir v £ n s s
C . N g . . . . . 0.1%0 1.269 -0.9332  -0.4600 ~0.4732
152 &38 Bl s¥I 383 3.6 103
which are in fact negative, but Tables 3 and Sshow that w1 130 U 130 340 380 B0 i ses owm o
- §52 301 orf 63 33%F Y41 35
;.0]; Ll;” ;.:XI 1.604 0.530 0.074 0.241 1.151 -0.998%  -0.5072 =0.491)
s ars 2 36l 111 713 ind
126 2,495 2.077 1726 .27 0.3%0 0.066 0.248 1,066 -0.9796  -0.509)
. P X X X X X “0.4703
Table 2. 35 cosines calculated to be most positive w18 ilg Sar TIU sde £a1 a1 -
: '.’ " ‘41 4 I.;B; ;.;5' 24666 0.1%0 0.190 1.460 -0.5405  -0.5126 -0.0279
. . . ; s 3 i o
( > 0 90) wlth 2 00 S B < 2 10 128 2.152 2.018 1.814 2,001 0.:2) ::J} :3]:9, 1.086 -0.4919  -0.5219 40.0300
a4 aI1 743 10 633 Tos1 334 !
Sertal i H H H 1w 1w s Cos ) 8 con = 129 2.488 2.566 2.014 1,565 0,438 0.202 0.352 1.389  -0.8M3  -0,5507 -0.2936
; v (PLEHENE z
Iggl lzgl legl lest ingal legal legel 3 Trus Calc. con ~con, 10 424 s27 783 i3s  91%13 a1 21010
! >4 1 4 oy (5.9)6(5.6) 2,788 2]6;; l‘.mo 1.763 0,154 0.074 0.642 1.511 -0.6573  -0.5744 -0.0829
152 Is  63% o040 Sae 721 ’
m 3.087 2,1% ! - B .
551 Tet e s1e . - . o M t‘) ; ;ss 179 0.8y 0.09% 0.258  1.277  -0.7950 -0.6025 -0.1923
1 .04 2765 ERTH Les 250 3,087 2243 2.00 0.9840  0.9453 40,0387 2 HE 3566 > [RA TR R I X5 341
552 711 3% 264 TEIo 03I 436 iy 62001 213209 06 03N 2158 09853 0.6 o.2n
2 oM 291 2488 1325 1987 3053 2.924 2012 0.9820  0.9409  +0.0411 s g10 11 % 00 1Ly BsAY oo 1
121 ot Vs 521 a1t 072 e 8 3 . 1133 0.176  1.958  -0.9646 -0.7937 -0.1109
3 2.862 2,566 2,073 1.958 1.603 3,083 2,328 2.0%6 0.9331 0.9267 +0.0684
332 381 913 oi1  ¥s31 %o 313 .
4 3,034 2,458 2.176 1.803 2.201 2.626 2.275 2.018 0.7968 0.9266 -0.1298
i21 511 233 833 3o 152 113
3 ,2.862 2,566 2,289 1.802 2.951 J.087 1.183 2,089 0.1 0.9258 -0.1387
352 912 508 176 670 231 Teas . . .
5 3.0 2,176 2,152 a7 2.626 2.830 1,608 2.084 0.9987 0.9254 40,0733
STI o Eei Tre  sie 133 137 23k Table 4. 25 cosines calculated in the middle range
7 3,053 2,765 .17 1.61¢ 2.924 J.087 1.085 .08) 0.9967 0.9223 40,0742 >
ORI g (0-00 to +0-70) with 2-00< B<2-10
3 2.000 2.45¢ 2182 2,023 1.850 3.04 2.03% 2,085 0.8520 0.9214 -0.0694
52 711 TI1Z  n3z TWio Ilo 80w sartal 1 : H H is 1 5 Conlapragrea) 4 coe =
9 3.034 2917 2170 1538 198 2241 57 203 0.8717  .0.9202 -0.0485 wader  I5gl Iggl legl Iggl L] ezl leg 3! 3 True . cas, ~con,
093 %34 a0 Boi 311 433 37T @060
10 3.053 2.8%0 2,262 1.528 1.758 2.018 3.109 2,041 0.9827 0.9195 +0.0632
134 (B¢ 508 MEs 621 332 19 053 131 542 674 1T} 3 602
u 2.8 2014 2152 2.01 2.020 3.04 L824 2013 0.7481  0.9188 -0.1707 201 .08 2,408 2176 111 0.962 0.852 2,010 2.026 0.977 0,893 +0.2841
713 912 TI% T4 231 o0l §sa [R&3 sz ¥al 181 s170 823 111
12 2.917 2.176 2,170 2.159 2.830 2,547 1,41 2.051 0.9532  0.9185 +0.0347 202 3.083 2,303 2,140 1.973 1.519 111 0.915 2.048 0.5872  0.69M4 ~0.1062
07z 352 5138 196 3IWo si8 24 iz 831 1z 883 531 134 551
n 3,083 3.004 2158 1491 1.989 2.509 2042 2.0% 0.9902  0.9176 40,0726 203 3.004 2.458 X 1.802  2.200 0.873 0.877 2,011  -0.7346 0,696 “1.d462
0fi Zak 440 ofs 133 431 0l 552 112 163 % £ 531 L ER
I 3.083 2,765 2.202 L5z 2.015 1795 2050 0.9527  0.9168 +0.0359 200 3.0 .97 1695 2.76% 0.818 o1 2,00 097183 0.6892 40,2881
234 il0 112 0% F1s Tas 313 [3%3 T20 133 issz 22l 711 N
15 2,80 2,242 2.170 2152 1,559 2.159 3.0 2,003 0.9842  0.9156 +0.0686 208 3,053 2.7 2.140 2.014 3.087 1113 0.500 2,013 0.9970  0.680) 40,3097
527 X R 94812 233 M6 «&s 113 13 343 113 317 Ist §o0l i35
16 2.64) 2.458 2.176 2,142 2.355 1.936 2,278 2,088 0.9438 0.9154 +0.0284 206 2917 2.27% 2,170 2.039 1.540 2.547 0.247 2,028 0.2602 0.6838 ~0.4186
2 EER 508 176 §10 331 il 713 650 133 2101 12331 [ 32 Tul
17 2. 2,785 2.152 1,728 2.626 3.004 113 2.003 0.8132 0.9144 =0.1012 207 2.917 2.626 2.015 1.9 1,406 0.906 1.1%0 2.058 0.9995 0.6807 +0.2188
51008 1370 s34 §s3 073 482 332 911 231 F63 631 13t Ui
18 2.303 2.7 1.860 1.426 3.083 2.183 .03 0.9316 0.9133 +0.018) 208 3,004 2,366 2,162 1.802 0.322 3.087 1.013 2.073 0.8249 0.6755 “0.13%4
544 234 a1f Ere is? 130 121 681 [ 3%} 333 sio 32 273
19 2,488 2.162 1.871 127 3.087 2.217 2.086 0.9744 0.9115 40.0629 209 2.862 2.458 2314 1.822 1.169 2,092 0.339 2,046, 0.5524 0.6333 ~0.100%
¥ 931 171 020 681 24 T13 I21 s21 382  #33 i1 Tio
20 2.211 2,201 1.52% 1.987 2,458 1.976 2,047 0.9473 0.9113 +0.0360 220 2.917 2,862 2.023 .42 0.867 0.778 2.242 2.019 0.8683 0.6504 +0.2181
171 231 723 911 8ol 3sy . R R 130 nsas Fiil Wie 184
2 2.862 2.830 1.220 2,566 2,547 1490 2.011 0.9989 09111 +0.0878 1 2.9% 2,488 2.242 m 1.400 0.619 1.358 2.010 0.39%0 06344 -0.23%
70 602 131 dsi  s21 071 i) s i §
22 2,626 2,070 1.887 1.446 2.023 3.05) 2.025 0.9723 0.5084 +0.0639 212 ;?l:lo g.;)ﬁ ;-f‘; §~;ﬂ‘) i.i&g !.Eﬂ: z.:l; 2,087 0.0611 0.622) ~0.5612
1031 130 a1 0Tt 510 el i1a 670 338 711 4la 161 Jas .
i 245 2.2 L6 L80) LN 2.2 206 013 0.9078  -0.0%1 w 2830 2626 2001 1957 2765 0076 LIS 2,007 0055 0.61%  40.2699
132 ni:r s 386 wII 337 T34 iz21 el 621 6151 21 540 380
2% 3.087 2672 2,136 1682 2.290 1.799 2.207 2.044 0.8518  0.9077 0,059 4 2.862 2612 2.020 1934 1.6 1.744 020 2,060 -0.2381  0.595) ~0.8334
L ER 670 g9l «8s 231 o138 o1 734 911 153 78 123 187 TR %3
25 2.763 2,626 2,140 1.9 2.830 1.904 1.643 2,075 0.9987  0.9071 +0.0918 2as 2.830 2.566 2,013 1.999 1.220 0.293 2.52% 2.075 0.9507  0.5945 +0.3562
il To LR R Ta6 B0k s03% Ta2 2N 911 440 TMEI 722 274 SR BN
26 2.765 2,242 2176 2159 2547 2152 1.658 2,008 0.9809  0.5070 +0.0139 216 2.830 2.566 .02 119 1220 3.108 0.6 2,020 0.7287  0.5413 0.7
121 813 232 118 §32 131 633 073 ngr Isi ¥s3 uni 113 ¥F21
b 2.862 2.0 2,165 2.108 2.092 2.862 1.436 2.084 0.8936 0.9070 -0.0136 nr 3.053 2.612 2.183 1.654 o1 0.681 L 2.032 0.2667 0.5310 ~.2643
352 134 931 1s3 %o 681 123 wio 212 351 s0l Y22 FLER 331
2 3.00 2.830 2.201 1.580 2182 2,438 1720 2.007 0.9976  0.9068 +0.0908 18 2.95 2,917 2,023 1.733 1.246 1.024 0.115 2,001 -0.9214  0.5302 -1.4516
532 3183 8sl  avs 211 §e1 1167 134 87 253 10T Ew0s Zo1 &%)
] .00 2.158 2,140 2007 242 1458 202 2.007 0.9471  0.9048 +0.0622 29 280 .2.626 2.289 1761 2.8 0.753 0367 2.066 0.5121  0.4204 +0.0923
07% L EX) 120 251 132 131 231 1531 [ 3%} §s51 1013y ITPI TWoi 921
20 3.08) 2,488 2,217 1.726 3.0 127 2,242 2,008 0.8701  0.9032 ~0.0331 220 3.087 3,083 2,201 1,043 L2 0,824 0.747 2,064 -0.1642  0.3921 -0.5563
i1i ala Ilo 7712 1352 mss o8l 132 LR X} 528 50 16 212 LER]
E1Y 2917 2,763 2242 1631 2,004 1.538 L9520 0.995¢  0.9030 +0.0926 a .00 2.765 233 148 L7238 0.606 0.606  2.004 0.7608  0.3745 +0.3863
711 sl 95% 4%s T3 231 583 187 i35 734 151 38§ §iz 901
pH 2.917 2.438 2,092 1.936 2.176 2.142 1.822 2.003 0.8684 0.9023 =0.02)9 22 3.087 2.289 2.207 1.892 0.350 1.048 1.300 2,038 ~0.8589 0.3505 =1.219%
10 881 440 01§ I3 210 Tl [RR3 243 I3 Ts2 335 171 Y10
» 2,951 2.458 2.202 1.80) 1.160 2.626 2,454 2.022 0.8593 0.9020 -0,0425 23 3.05) 2,273 2.216 1.952 1.0 0.774 0.39 2,0m2 =0.9987 0,1650 -1.1637
I3a T4l s21 141 810 333 18y 07l 9ff 112 W71 9B8% 130 1ol
B 2.830 2.765 2,023 1.887 2.626 1.816 1.695 2.060 0.9768 0.%011 +0.0787 k22 3.083 - 2.566 2170 1161 1.003 0.344 0.024 2,068 =0.9109 0.0M43 ~0.9458
[R&3 Wio I35 nes WIF IS n23 1% T21 31y unio 3 W51 423
33 3.0%) 2.951 2.073 1,565 2.52% 1.396 2,250 2,016 0.9495 0.9008 40.0487 a2 2.917 2.862 2.27% 1,352 0,867 L1148 0.222 2.003 ~0.9989 0.0164 ~1.0183
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Table 5. Average error and average magnitude of the
error in calculated cosines taken from Tables 24

Number of
contributors

Average Average magnitude
error, of the error,

{4 cos) {|4 cos|) to the average
From Table 2 +40-0129 0-0661 35
From Table 3 —0-3620 0-3894 33
From Table 4 —0-2982 0-5271 25

quantitative agreement is poor. Nevertheless, because
the estimates tend to be consistently too large, i.e. not
sufficiently negative, it is clear that rescaling the cal-
culated values by an empirically determined numerical
factor will bring the calculated values of these cosines
into acceptable agreement with the true values. It is
conjectured that the bias shown by Table 3 arises from
the excessive overlap in the Patterson function which
causes a larger number of extremely negative cosines to
occur than predicted by the theory (which assumes no
Patterson overlap). A measure of the degree of Patter-
son overlap is given by comparison of the values of the
two parameters,

UE-DDex13, (ELS—-1D)ux46,  (7.2)

with the theoretical values of 1 and 2 respectively when
no overlap is present (Hauptman, 1964). Finally,
Tables 4 and 5 show that those cosines calculated to be
in the middle range (0-00 to +0-70) are in poor agree-
ment with the true values, and it is not clear that the
initially calculated values can be brought into accep-
table agreement with the true values in any simple way.
The poor agreement between calculated and true
values for these cosines is undoubtedly a consequence,
at least in part, of the relatively large associated vari-
ance.

8. Concluding remarks

In this paper the probabilistic theory of the cosine in-
variants cos (¢;+ ¢m + ¢n +¢,) has been initiated. The
theory leads to estimates for these cosines in terms of
the seven magnitUdes lEll’ |Em|a |En[’ IEpla |El+m|’E|l+n|a
|Ey+pl. On the basis of preliminary calculations it
appears that the cosines calculated to be most positive
serve effectively to identify those cosines which are in
fact most positive, those calculated to be negative
effectively identify the cosines which are in fact nega-
tive, but those calculated to be in the middle range

A C30A - 10
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(0-00 to 0-70) are not reliable indicators of the true
values.

Further developments along the following lines are
suggested: Derive improved distributions which take
into account higher-order terms in 1/N and whatever
overlap in the Patterson may be present. Derive con-
ditional distributions of two phases from joint proba-
bility distributions of four or more structure factors in
order to obtain estimates of the cosines dependent on
more than seven magnitudes. It is anticipated that more
accurate distributions, dependent as well on many
magnitudes, will surely lead to improved estimates for
the cosine invariants.

Most of the work described in the present paper was
done while the author held a two-month NATO
Senior Fellowship Award in Italy under the auspices
of the Consiglio Nazionale delle Ricerche, March-
May, 1973. The author is indebted to Drs Paolo
Gallitelli and Lodovico Riva di Sanseverino for making
this fellowship possible. Finally, grateful acknowledge-
ment is made to Dr David Langs for discussions and
suggestions concerned with the calculation of the cosine
invariants and for his work in performing the calcula-
tions summarized in the Tables.
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